Search results for "MESH: Larva"

showing 3 items of 3 documents

Fatty-acid preference changes during development in Drosophila melanogaster.

2011

WOS:000296521400044; International audience; Fatty-acids (FAs) are required in the diet of many animals throughout their life. However, the mechanisms involved in the perception of and preferences for dietary saturated and unsaturated FAs (SFAs and UFAs, respectively) remain poorly explored, especially in insects. Using the model species Drosophila melanogaster, we measured the responses of wild-type larvae and adults to pure SFAs (14, 16, and 18 carbons) and UFAs (C18 with 1, 2, or 3 double-bonds). Individual and group behavioral tests revealed different preferences in larvae and adults. Larvae preferred UFAs whereas SFAs tended to induce both a strong aversion and a persistent aggregation…

[ SDV.BA.ZI ] Life Sciences [q-bio]/Animal biology/Invertebrate Zoology[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionlcsh:MedicineInsectMESH : Behavior AnimalBiochemistrychemistry.chemical_compoundBehavioral EcologyMESH : Drosophila melanogasterMESH: Behavior AnimalMESH: AnimalsPalatabilitylcsh:ScienceMESH : Fatty Acidsmedia_commonchemistry.chemical_classificationLarvaMultidisciplinaryMESH : Food PreferencesEcologyAnimal BehaviorBehavior AnimalEcologyMESH : Fatty Acids UnsaturatedDrosophila MelanogasterFatty AcidsAge FactorsAnimal ModelsNeuroethologyMESH: Fatty Acids UnsaturatedtrpLipidsPreferenceMESH: Fatty AcidsMESH: Dietary FatsSex pheromoneLarvadietary fatFatty Acids Unsaturatedtaste receptor cellSensory PerceptionDrosophila melanogasterResearch Articlelinoleic acidmedia_common.quotation_subjectLinoleic acidZoologylarvaeBiologyMESH: Drosophila melanogasterFood PreferencesModel OrganismslipidAnimalsMESH: Food PreferencesBiologyMESH: Age FactorsEvolutionary BiologyChemical EcologyMESH : Larvalcsh:RfungiFatty acidbiology.organism_classificationDietary Fatstaste receptor cell;dietary fat;aggregation pheromone;linoleic acid;larvae;lipid;trp;palatability;metabolism;mutation[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoologychemistrypalatabilitylcsh:QMESH : Age FactorsMESH : AnimalsmutationmetabolismMESH: Larva[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH : Dietary FatsNeuroscienceaggregation pheromone
researchProduct

Expression profiling of prospero in the Drosophila larval chemosensory organ: Between growth and outgrowth

2010

AbstractBackgroundThe antenno-maxilary complex (AMC) forms the chemosensory system of theDrosophilalarva and is involved in gustatory and olfactory perception. We have previously shown that a mutant allele of the homeodomain transcription factor Prospero (prosVoila1,V1), presents several developmental defects including abnormal growth and altered taste responses. In addition, many neural tracts connecting the AMC to the central nervous system (CNS) were affected. Our earlier reports on larval AMC did not argue in favour of a role ofprosin cell fate decision, but strongly suggested thatproscould be involved in the control of other aspect of neuronal development. In order to identify these fu…

Central Nervous SystemMESH : Transcription FactorsMESH: DrosophilaOF-FUNCTION SCREEN;MUSCA-DOMESTICA L;HOUSE-FLY LARVA;FINE-STRUCTURE;AXON GUIDANCE;TRANSCRIPTION FACTOR;PATTERN-FORMATION;GENETIC-ANALYSIS;NERVOUS-SYSTEMGenes InsectMESH: Genes InsectAXON GUIDANCEMUSCA-DOMESTICA L0302 clinical medicineMESH: Gene Expression Regulation DevelopmentalCluster AnalysisDrosophila ProteinsMESH: AnimalsTRANSCRIPTION FACTORMESH: Nerve Tissue ProteinsMESH : Nerve Tissue ProteinsOF-FUNCTION SCREENOligonucleotide Array Sequence AnalysisGenetics0303 health sciencesMESH : Central Nervous SystemMicrobiology and ParasitologyMESH : Genes InsectGene Expression Regulation DevelopmentalNuclear ProteinsMESH: Transcription FactorsNull alleleMicrobiologie et ParasitologieMESH : Oligonucleotide Array Sequence Analysis[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Larva[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]DrosophilaDrosophila ProteinResearch ArticleBiotechnologylcsh:QH426-470MESH: Drosophila Proteinslcsh:BiotechnologyNerve Tissue ProteinsBiotechnologiesBiology03 medical and health sciencesMESH: Gene Expression ProfilingGENETIC-ANALYSIS[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]lcsh:TP248.13-248.65GeneticsAnimalsMESH : Cluster AnalysisMESH: Central Nervous SystemAlleleMESH : DrosophilaAlleles030304 developmental biologyMESH : LarvaMicroarray analysis techniquesHOUSE-FLY LARVAGene Expression ProfilingMESH : Gene Expression ProfilingMESH: AllelesWild typeMESH : Nuclear ProteinsProsperobiology.organism_classificationMESH : Drosophila ProteinsMESH: Cluster AnalysisNERVOUS-SYSTEMGene expression profilinglcsh:GeneticsMESH: Oligonucleotide Array Sequence AnalysisHomeoboxMESH : AnimalsMESH : Gene Expression Regulation DevelopmentalMESH : AllelesMESH: Nuclear ProteinsMESH: Larva030217 neurology & neurosurgeryTranscription FactorsPATTERN-FORMATIONFINE-STRUCTURE
researchProduct

Tenectin is a novel alphaPS2betaPS integrin ligand required for wing morphogenesis and male genital looping in Drosophila.

2010

International audience; Morphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile hormones and involves cell-cell interactions mediated in part by the cell surface integrin receptors and their extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well characterized. We describe the gene structure of a newly described ECM molecule, tenectin, and demonstrate that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male genitalia. Tenectin's function as a new ligand of the PS2 integrins is demonstrated by both genetic interactions in the fly and by cell s…

MaleMESH: Extracellular Matrix ProteinsMESH: DrosophilaMESH : Immunohistochemistry[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionIntegrinLigandsLooping morphogenesisExtracellular matrixchemistry.chemical_compound0302 clinical medicineMESH: Genitalia MaleMorphogenesisMESH: LigandsDrosophila ProteinsWings AnimalMESH: AnimalsTransgenesIn Situ Hybridization0303 health sciencesExtracellular Matrix ProteinsMESH : Genitalia MaleMESH : LigandsIntegrin alpha ChainsCell adhesion moleculeMESH : In Situ HybridizationImmunohistochemistry3. Good healthCell biologyLarvaMESH : Integrin alpha ChainsAdhesionDrosophilaMESH : MutationMESH : TransgenesTenectinIntegrin alpha ChainsDrosophila ProteinEcdysoneEcdysoneMESH: MutationMESH: Drosophila ProteinsMESH : MaleIntegrinMorphogenesisMESH : WingMESH: TransgenesBiologyGenitalia MaleArticle03 medical and health sciencesMESH : Extracellular Matrix ProteinsMESH: In Situ HybridizationAnimalsMESH : DrosophilaCell adhesionMolecular Biology030304 developmental biologyMESH : LarvaMetamorphosisMESH: Integrin alpha ChainsLeft–right asymmetryMESH: ImmunohistochemistryCell BiologyMESH : Drosophila ProteinsMESH: WingMESH: MaleMESH: MorphogenesischemistryMESH : MorphogenesisMutationbiology.proteinMESH : AnimalsMESH: Larva[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryDevelopmental Biology
researchProduct